An introduction to supervision & deployment in Rock

Sylvain Joyeux

DFKI Bremen - Forschungruppe Robotik
& Universitat Bremen

Director: Prof. Dr. Frank Kirchner

www.dfki.de/robotics

robotics@dfki.de

@ Universitat Bremen

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 2/80

Outline

@ !ntroduction

@ Digging in: concepts
© Modelling

0 Deployment

e Dataflow Configuration
Q@ Runtime

ﬂ Conclusion

A P An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 3/80

1. Introduction

Introduction . 4
What will you learn today ' - ;I

@ explain what the supervision layer does
@ ...and how to control your robots with it

The main goal is to get you understand the basics of this tool)

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 5/80

Introduction ' . 4

Building blocks <

@ single components will often not be usable by themselves
e example: pose estimation component, image processing
component
e counter-example: devices
@ we must describe functional services
= a group of components that, together, do something

Describe these functional services so that

@ one can cherry-pick functionality
@ one can recognize identical things done in different ways
@ one can track errors

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 6/80

Introduction . b4
Compositions and data services ' ol

compositions group of components that provide a function

data services generic “placeholders” for components and/or
other compositions (i.e. Orientation for all
orientation providers)

can_in_system_status
can_in_experiment markers Compositions::Odometry
Provides: DataServices::RelativePose

task[Sysmon::Task]

experiment start

system_status

experiment_stop \ systemstate_samples

led_signal orientation_samples
hbridge_samples
imu[Orientation] odometry
orientation_samples [AsguardOdometry::Task]

odometry_delta_samples

command bodystate_samples
actuators[Actuators] odometry_samples
status

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 7/80

Introduction R |
Dependency structure ' - :I

Compositions::PoseEstimation

ataServices::Orientation ‘\[PoseEstimator::Task] lcp::Task

lComposi\ions::Odomelry] ‘ DataServices::Position ‘ ‘Da!aServices::Lasel'RangeFindel' ‘

Sysmon::Task ‘ DataServices::Actuators ‘ [AsguardOdometry::Task] DataServices::Orientation

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 8/80

2. Digging in: concepts

Digging in: concepts -~ 4
Models and instances ' . kl

Model gives information about a category of “things”

Instance a “thing” constructed based on information in the
corresponding model

Models Instances
OO programming Classes Objects
Type systems Types Values
oroGen Task context model Deployed task

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 10/80

Digging in: concepts ' . 4

Models and instances in Typelib & Roby I

Typelib

Type subclass of Typelib::Type
Value instance of a subclass of Typelib::Type

| \

Orocos/Roby

Task context definition subclass of TaskContext
Deployed task instance of a subclass of TaskContext

What does it mean ?

To add information to a model, you call class methods. To
modify the instances, you define methods on the class.

| A

\

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 11/80

Digging in: concepts . 4
Naming ' A

@ Ruby’s accepted naming scheme is UpperCamelCase for
classes and modules, UPPER_CASE for constant values
and snake_case for everything else

@ this is used in the instance / model scheme in the
supervision (we’ll see examples when they appear)

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 12/80

Digging in: concepts

What is it going to be ?

@ building compositions (modelling)
@ deploying these compositions (running)
@ configuration, reconfiguration & tuning

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011

13/80

3. Modelling

Modelling - Compositions . b g
' A

The goal

We’re going to deploy asguard’s odometry

can_in_system_status

can_in_experiment _markers

task[Sysmon::Task]

systemstate_samples
experiment_start - -
— N N N N orientation_samples
system_status imu[DataServices::Orientation] f

hbridge_samples

experiment_stop orientation_samples

odometry
led_signal command [AsguardOdometry::Task]
actuators odometry delta_samples

[DataServices::FourWheelPlatform]

bodystate_samples
status

odometry samples

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 15/80

Modelling - Compositions

. g
Model files)=

@ contain definitions of data services and compositions (and
some other things ...)

@ load each other with
load_system_model("filename”)

@ if models from oroGen files are needed, use
using_task_library "orogen_project_name”

Naming: oroGen — Roby

using_task_library ’xsens_imu’
Defines
— the XsensImu module

name ’xsens_imu’
task_context ’Task’ do

end
— the Xsenslmu::Task model
s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 16/80

Modelling - Compositions m
Creating compositions ’ <

using-task_library ’skid4_odometry’
using_task_library ’xsens_imu’
using-task_library *hbridge’

composition ’0dometry’ do

add Hbridge::Task, :as => ’actuators’

add Xsenslmu::Task, :as => ’imu’

add Skid4Odometry::Task, :as => ’odometry’
end

= Compositions: :0dometry composition model

Compositions::0Odometry
actuators_samples can in
- — imu[X Task] —
orientation_samples - actuators[Hbridge::Task]
calibrated_sensors
odometry[Skid4Odometry::Task] - - can_out
orientation_samples
odometry_delta_samples errors
state
odometry _samples state

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 17/80

Modelling - Compositions m
Child names ' e L

using-task_library ’skid4_odometry’
using_task_library *xsens_imu’
using-task_library *hbridge’
composition ’0dometry’ do

add Hbridge::Task, :as => ’actuators’

add Xsenslmu::Task, :as => ’imu’

add Skid4Odometry::Task, :as => ’odometry’
end

@ Implicit name generated as snake_case version of the child

model name
Hbridge: :Task — task, XsensImu: :Task — task, ...

@ Explicit names given with the :as option

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 18/80

Modelling - Compositions . b g
Adding the dataflow connections ' . \I

@ connections are specified per compositions

= the tool makes sure that the dataflow is consistent at a
system level

Autoconnections

@ candidates are searched by port type and then port name

@ ports that are involved in manual connection are
automatically excluded from autoconnect

@ if an ambiguity exists, an error is generated

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 19/80

Modelling - Compositions my
Adding the dataflow connections ' o

Autoconnections (contd.)

imu[XsensImu::Task]

calibrated_sensors

using_task_library ’skid4_odometry’ orientation’ samples
using-task_library ’xsens_imu’ stare
Using_task_library ’hbridge ’ C actuators_samples
composition ’0dometry’ do S SN
add Hbridge::Task, :as => ’actuators’ i i
odometry delta_samples
add XsensImu::Task, :as => ’imu’ odometry_samples
add Skid4Odometry::Task, :as => ’odometry’ e
aUTOCO nn eCt actuators[Hbridge::Task]
end can_out
errors
state

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 20/80

Modelling - Compositions . b g
Adding the dataflow connections ' . L

Manual connections

using-task_library ’skid4_odometry’
using_task_library ’xsens_imu’
using-task_library *hbridge’
composition ’0dometry’ do
add Hbridge::Task, :as => ’actuators’
imu = add Xsenslmu::Task, :as => ’imu’
odometry = add Skid4Odometry::Task, :as => ’odometry’
connect imu.orientation_samples => odometry.orientation_samples
end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 21/80

Modelling - Compositions L b g
What'’s the issue here ? ' . ;I

@ a plain hbridge task has no way to control / read status of
motors
@ the solution is to

@ use an abstract “actuators” service
o tell the system that the hbridge on asguard has one of those
e and let it use the hbridge as the odometry’s actuator

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 22/80

Modelling - Generalization m
Generalization ’ .

Two tools: data services and specializations

@ data services represent generic placeholders

@ specializations allow to refine the definition of compositions
to suit specific needs

The goal

@ share composition models across systems
@ allow to recognize the software structure easily
= common structure is represented in a common way
@ allow tools to recognize the structure
= a pose estimator is a pose estimator everywhere
@ factor out runtime management code

= if you a monitoring routine common to all pose estimators, it
needs to be defined onlv once

-

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 23/80

Modelling - Generalization m
Data Services ' o

@ they describe a functionality
@ they describe an interface
@ they describe relationships between themselves

import_types_from ’base’

data_service_type ’Actuators’ do
input_port("command", "base/actuators/Command")
output_port("status", "base/actuators/Status")

end

data_service_type ’FourWheelPlatform’, :provides => Actuators

Data service models are stored in the DataServices
namespace, i.e. DataServices::Actuators, DataServices::Status
(DataServices:: can be shortened to Srv::)

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 24/80

Modelling - Generalization m
Relationships between services ' <

data_service_type ’Position’ do
output_port ’position_samples’, ’/base/samples/RigidBodyState’
end
data_service_type ’Orientation’ do
output_port ’orientation_samples’, ’/base/samples/RigidBodyState’
end
data_service_type ’Pose’ do
output_port ’pose_samples’, ’/base/samples/RigidBodyState’
provides Position, *position_samples’ => ’pose_samples’
provides Orientation, ’orientation_samples’ => ’pose_samples’
end

@ Pose is providing both Position and Orientation

@ the pose_samples port of Pose is to be used in place of
either the position_samples port of Position or the
orientation_samples port of Orientation

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 25/80

Modelling - Generalization -
Composition with data service ' o X

using-task_library ’skid4_odometry’

composition ’0dometry’ do

add Srv::FourWheelPlatform, :as => ’actuators’
add Srv::Orientation, :as => ’imu’

add Skid4Odometry::Task, :as => ’odometry’
autoconnect

end

command

actuators[DataServices::FourWheelPlatform]

status [actuators_samples

orientation_samples
imu[DataServices::Orientation]
odometry[Skid4Odometry::Task]

orientation_samples

odometry delta_samples

odometry_samples

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 26/80

Modelling - Generalization my
Composition Specialization ' I

How to transform that

command

actuators[DataServices::FourWheelPlatform]

status [actuators_samples

orientation_samples
imu[DataServices::Orientation]
odometry[Skid4Odometry::Task]

orientation_samples

odometry delta samples

odometry_samples

= ez An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 57/80

Modelling - Generalization my

Composition Specialization o L

Into that (asguard’s odometry)

can_in system_status

can_in experiment markers

task[Sysmon::Task]

experiment_start

system_status

systemstate_samples
orientation_samples
imu[DataServices::Orientation] f — P

hbrid 1
orientation_samples ricge_sampies

experiment_stop

[DataServices::FourWheelPlatform]

odometry
led_signal command [AsguardOdometry::Task]
actuators odometry_delta_samples

status

bodystate_samples

odometry samples

An introduction to supervision & deployment in Rock

@ Universitat Bremen February 7, 2011 27/80

Modelling - Generalization m
Composition Specialization ' . \I

@ central change is that we use Odometry::Task instead of
Skid4Odometry::Task

@ but Odometry::Task is very much related to
Skid4Odometry::Task from a conceptual point of view

@ unfortunately, they are not related from an implementation
POV

= we first need to use a data service to generalize the
odometry task

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 28/80

Modelling - Generalization

ral o . _ 1 4
Composition Specialization '

(1) define the services

data_service_type ’RelativePose’ do

output_port >odometry_delta_samples’, ’/base/samples/RigidBodyState’
output_port ’odometry_samples’, ’/base/samples/RigidBodyState’

end
data_service_type ’0Odometry’ do

input_port ’orientation_sample’, ’ /base/samples/RigidBodyState’
input_port ’actuators_sample’, ’/base/actuators/Status’
provides RelativePose

end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 29/80

Modelling - Generalization

ral o . _ 1 4
Composition Specialization '

(2) replace Skid4Odometry::Task by Srv::Odometry in the
composition

composition ’0dometry’ do
add Srv::Actuators, :as => ’actuators’
add Srv::Orientation, :as => ’imu’
odometry = add Srv::Odometry, :as => ’odometry’

autoconnect
end
command
actuators_sample
actuators[DataServices::Actuators] - n
orientation_sample
status d try[DataServices::Odometry]

imu[DataServices::Orientation] odometry delta samples

orientation_samples odometry_samples
@ Universitat Bremen An introduction to supervision & deployment in Rock

February 7, 2011 29/80

Modelling - Generalization

-y
Composition Specialization ' A

(3) tell the supervision to add sysmon if odometry is an
AsguardOdometry::Task

using_task_library ’odometry’

class AsguardOdometry::Task
provides Srv::Odometry

end

Compositions::Odometry.specialize ’odometry’ => AsguardOdometry::Task do
add Sysmon::Task
autoconnect

end

item autoconnect in the parent composition does not apply on
the specializations

= needs to be repeated

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 30/80

Modelling - Generalization

Composition Specialization

. 4
A

@tell the supervision to add sysmon if odometry is an

AsguardOdometry::Task

Compositions::0Odometry

command
actuators actuators_sample
[DataServices::Actuators] orientation_sample
status odometry[DataServices::Odometry]

[imulDataServices::Orientation] |

odometry delta samples

‘ orientation samples

odometry samples

Compositions::Odometry
[odometry.is_a?(AsguardOdometry::Task)]

can_in_system_status

can_in_experiment_markers

task[Sysmon::Task]

experiment_start

system_status

experiment_stop

systemstate_samples

orientation_samples

‘ orientation samples

hbridge_samples

odomet:

Ty
led_signal command [AsguardOdometry::Task]
actuators odometry_delta_samples
[DataServi form] bodystate_samples
status odometry_samples

@ Universitat Bremen

An introduction to supervision & deployment in Rock

February 7, 2011

30/80

Modelling - Almost there >
How to use compositions in compositions ? ' o

@ you use them directly
@ you use them in place of a service
= how to make compositions services ?

composition ’0dometry’ do
add Srv::Actuators, :as => ’actuators’
add Srv::Orientation, :as => ’imu’
odometry = add Srv::Odometry, :as => ’odometry’
autoconnect

export odometry.odometry_delta_samples
export odometry.odometry_samples
provides Srv::RelativePose

end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 31/80

Modelling - Aimost there m
How to use compositions in compositions ? ' o L

Compositions::Odometry
Provides: DataServices::RelativePose
command
status —— actuators_sample

orientation_sample

[imuDataServices::Orientation]
y[DataSer 22 vl C

‘ orientation_samples

odometry delta_samples ---+ odometry delta_samples

odometry_samples F-- odometry_samples

In the system model display
@ dotted arrows represent exports
@ blue box represents the composition’s own interface

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 31/80

Modelling - Practical aspects S b g
Your turn now ! ' u ;I

@ This was very dense (I know)

@ Your turn: think about your system’s architecture and what
compositions you want to implement

@ implement them without data services and without
specializations at first

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 32/80

Modelling - Practical aspects - 4
How ? ' A

@ go into a new directory and
roby init -p orocos
@ enable the orocos plugin by editing config/init.rb and add

Roby.app.using ’orocos’

Standard file layout

tasks/data_services/ service definitions
tasks/compositions/ composition definitions

System model display tool
scripts/orocos/system model -o svg

= system_model.svqg file, can be displayed by e.g. inkscape

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 33/80

Modelling - Practical aspects L b g
A bit more on the file layout ' o

tasks/orogen/ contains per-oroGen-project definitions

= if the project "xsens_imu” is loaded inside the supervision,
then tasks/orogen/xsens_imu.rb will be loaded too

@ used to bind tasks to generic services
@ used to define specializations of generic compositions

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 34/80

Modelling - Practical aspects ' |

Reusing stuff ! <

you can clone imoby’s models from
git://spacegit.dfki.uni-bremen.de/imoby/supervision.git

@ have a look at the complete system model with
scripts/orocos/system model -r asguardv3 -o svg

@ what can you reuse / what patterns are common with your
system ?

@ try reusing them by defining e.g. specializations

An introduction to supervision & deployment in Rock
35/80

@ Universitat Bremen February 7. 2011

4. Deployment

Deployment m
Introduction ' - kl

@ we have all those “nice” compositions
@ some of them are completely abstract (refer to services)

@ need to deploy
= tell the system what you really want to run

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 37/80

Deployment L b 4
Loading sequence ' . kl

@ most of the roby-related commands can take a “robot
name” as argument

@ this name defines what needs to be loaded

o for the time being, what you need to know is:

e config/init.ro
e config/robot_name.rb

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 38/80

Deployment

oroGen workflow

Pool of component models
split across oroGen projects

hokuyo::Task ||@sguard_odometry::Task

(corridor_navigation::FoIIowingTask)

Vs

G

One system deployment project +
e N

name "asguard_deployment"
deployment 'canserial'do
task('canserial', 'canserial::Task').
realtime.
priority(75)
add_default_logger
end
deployment "xsens_imu'"do
task('xsens_imu', 'xsens_imu:
realtime.
priority(25)
add_default_logger
end
deployment "lowlevel"do
_ task('can@', 'canbus::Task'). Y,

:Task').

@ Universitat Bremen

February 7, 2011

)=

@ all deployed tasks for a
single system are defined
in a single oroGen
deployment

= provides a good
overview of all the
available tasks

@ the other oroGen projects
can have test deployments

This is a recommended
workflow, which works well with
the supervision. You're free to
do otherwise, though !

An introduction to supervision & deployment in Rock

39/80

Deployment m
oroGen & Roby loading sequence o X

o Roby loads the base config files

config/init.rb
config/asguardv3.rb

(}oby.app.useideploymentsifrom “asguardideploymglg‘:)

e oroGen loads the spec for the requested deployment

asguard_deployment.orogen ¢—m8Mmm—
o oroGen loads depended-upon specifications
xsens_imu.orogen

name 'xsens_imu'
task_context 'Task'do
o Roby creates the corresponding task model classes

(convertion from snake_case to CamelCase !)
XsensImu::Task

using_task_library 'canserial"’
using task library 'canbus'
[using_task_library 'xsens_imu' |
deployment 'canserial do
task('canserial','canserial::Task').
realtime.
priority(75)
add_default_logger
end
deployment "xsens_imu"do
task('xsens_imu", 'xsens_imu::Task').
realtime.

Roby loads the extension file in tasks/orogen/, if

there is one

tasks/orogen/xsens_imu.rb

[class XsensImu::Task]
provides Orientation

end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 40/80

Deployment m
A note of Ruby ' u kl

When, in tasks/orogen/xsens_imu.rb, we do

class Xsenslmu::Task
provides Srv::Orientation
end

we reopen the XsensImu: : Task class
= we add “stuff” to an already existing class (a Ruby feature)

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 41/80

Deployment - Devices L D
The role of devices ’ o L

@ central role: that’'s where data comes from (and goes to) !
= they are part of the robot description

What we are goingtodois...

@ learn how the device descriptions work
@ learn how to list our robot’s devices

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 42/80

Deployment - Devices |
Devices ’ A

Tasks are declared as drivers Robot description block
(in config/robot_name.rb)

tasks/orogen/hokuyo.rb ~ N
Robot.devices do
device(Devices::Hokuyo).
additional_configuration.

(class Hokuyo::Task
driver_for "Devices::Hokuyo"

\end more_configuration.
tasks/orogen/xsens_imu.rb
4
class XsensImu::Task device(Devices::XsensImu).
driver_for "Devices::XsensImu" do additional_configuration.
provides Srv::Orientation more_configuration.
end
end end
S - J

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 43/80

Deployment - Devices - 4
Devices ’ Q

@ device models are defined in Devices (Dev in short)
@ devices are data sources

@ one task can be a driver for multiple devices
simultaneously

@ the driver_for ‘Dev::ModelName’ form defines both the
device model and says that the task is a driver for this. The
“Dev::” (or Devices::) prefix can be omitted.

@ if you have multiple available drivers for a given device,
define the device model separately with
device_type ‘ModelName’
and declare the driver without the quotes with
driver_for Dev::ModelName

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 44/80

Deployment - Requirements my
Small note ' I

I’'m cheating !

The FourWheelPlatform used before does not exist anymore.
There are only Actuators from now one

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 45/80

Deployment - Requirements

Ask the system to deploy !

More layout !

config/deployments/ predefined deployment files

edit config/deployments/odometry.rb

add_mission Compositions::Odometry

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011

46/80

Deployment - Requirements -
What do we have ... for now ? ' u kl

tasks/orogen/xsens_imu.rb

class Xsenslmu::Task config/tutorial.rb
driver_for ’XsensImu’ do
provides Orientation
end
end

Robot.devices do
device Xsensimu
device Hokuyo

end

tasks/orogen/hokuyo.rb config/deployments/odometry.rb

class Hokuyo::Task
driver_for *Hokuyo’
end

add_mission Compositions::Odometry

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 47/80

Deployment - Requirements

run
scripts/orocos/instantiate odometry -o svg

A P An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 48/80

Deployment - Requirements

run
scripts/orocos/instantiate odometry -o svg

and get

|= cannot find a concrete implementation for 1 task(s)
| for DataServices::Actuators:0x7f6c54473f48[]
| child actuators of Compositions::0dometry/[odometry.is_a?(AsguardOdometry::

= ez An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 48/80

Deployment - Requirements m
Ahh ...yes ...)=l

Our device list contains
@ a single Srv::0Odometry provider (Odometry::Task)

@ a single Srv::Orientation provider (the IMU)
@ but no Srv::Actuators provider
= remember that issue with the hbridge task ?

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 49/80

Deployment - Dynamic services ’ b | 'I

The hbridge deployment o

@ the hbridge multiplexes/demultiplexes
@ it creates the “right” ports at configuration time
@ but we need to tell the module what to do !

Robot.devices do
hbridges = device(Dev::HbridgeSet)
hbridges.slave(Dev::Hbridges).
select.ids(—1, 2, 3, —4)
end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 50/80

Deployment - Dynamic services

-y
Defining dynamic services ' A

class Hbridge::Task
hbridge_set = driver_for(’HbridgeSet’)
hbridges = hbridge_set.dynamic_slaves ’Hbridges’ do
output_port "errors_#{name}", "/hbridge/Error"
input_port "cmd_#{name}", "/base/actuators/Command"
output_port "status_#{name}", "/base/actuators/Status"
provides Srv::Actuators,
"status" => "status_#{name}",
"command" => "cmd_#{name}"
end

@ one can define Hbridges devices on HbridgeSet devices
@ Hbridges devices are Actuators

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 51/80

Deployment - Dynamic services S b g

Finally ... o

Deployments::Sysmon
[Process name: sysmon]

can_in_experiment_markers
can_in_system_status
Sysmon::Task

experiment_start Deployments::Lowlevel
experiment_stop [Process name: lowlevel]
led_signal T _
system_status can_in
cmd_hbridges
Hbridge::Task[hbridge_set]
hbridge_set_| idge_set hbridge_samples
orientation_samples
Deployments::XsensImu
[Process name: xsens_imu] can_out systemstate_samples
errors Odometry::Task
Xsenslmu::Task errors_hbridges bodystate_samples
xsens_imu_name:xsens_imu state odometry_delta_samples |---» odometry_delta_samples
status_hbridges odometry_samples I odometry_samples
calibrated_sensors Compositions::Odometry
orientation_samples i odometry.is_a?(Odometry::Task)
state odometry_delta_samples
odometry_samples

Colored boxes that enclose tasks represent deployments (i.e.
processes), the blue boxes represent the composition’s
interfaces (exported ports)

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 52/80

Deployment - Dynamic services my
What about multiple devices ? ' I

Robot.devices do
device Dev::Xsenslmu, :as => ’xsens_imul’
device Dev::Xsenslmu, :as => ’xsens_imu2’
device Dev::Hokuyo

end

add_mission Cmp::Odometry

= cannot find a device to tie to 1 task(s)
| for XsensImu::Task:0x7£558e8cd710[]
| child imu of Compositions::0dometry/[odometry.is_a?(0dometry::Task)]:0x7£55

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 53/80

Deployment - Dynamic services

Disambiguate by name

Robot.devices do
device Xsenslmu, :as => ’xsens_imul’
device Xsenslmu, :as => ’xsens_imu2’
device Hokuyo

end

add_mission(Compositions::Odometry).
use ’xsens_imul’

The device name has to match the deployed task name

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011

54/80

Deployment - Dynamic services D |

Disambiguate by name -

Deployments::Lowlevel
[Process name: lowlevel]
can_in
cmd_hbridges
Deployments::XsensImu Hbridge::Task[hbridge_set]
log:true,on:localhost hbridge_set_name:hbridge_set hbridge_samples
orientation_samples
[Process name: xsens_imu] can_out systemstate_samples
Xsensimu:-Task errors AsguardOdometry::Task
xsens_imu imut errors_hbridges bodystate_samples
- - state odometry_delta_samples |--#{ odometry_delta_samples
calibrated sensors status_hbridges odometry_samples = odometry_samples
orentaton_sampes g omposions Odometry
state [Process name: sysmon] e v
odometry_delta_samples
can_in_experiment_markers odometry_samples
can_in_system_status
Sysmon::Task
experiment_start
experiment_stop
led_signal
system_status =

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 54/80

So...

Deployment - Dynamic services W
' A
i

@ the engine will not leave any ambiguity

@ if it is ambiguous, it will generate an error

@ if there’s something missing, it will generate an error
@ in all the other cases, it will deploy automatically

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 55/80

Deployment - Dynamic services ’

Multi-host deployments

. g
L

@ two-machine setup, avalon-front and avalon-back

@ supervision runs on avalon-back (localhost)

@ tell the supervision what should run where
Roby.app.use_deployments_from ’avalon_back’, :0n => ’localhost’

Roby.app.orocos_process_server *front’, avalon-front’
Roby.app.use_deployments_from ’avalon_front’, :0n => ’front’

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011

56/80

Deployment - Dynamic services |
Multi-host deployments ’ A

@ the system will deploy by picking tasks on each available
machine

@ it will try to reduce network load (i.e. pick tasks that are
close to each other)

@ the orocos process server must be manually started on
avalon-front with
Orocos_process_server

@ the avalon_front oroGen project does not need to be built
on avalon_back, but needs to be on avalon_front

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 57/80

Deployment - Dynamic services ’ |

Up to you now ! <

@ create deployment files to play around

@ run
scripts/orocos/instantiate -r robot_name -o svg
--no-policies --no-loggers deployment_name

= deploys the specification from
config/deployments/deployment_name.rb

@ alternatively, to get the network before deployment,
scripts/orocos/instantiate -r robot_name -o svg
--no-policies --no-loggers --no-deployments
deployment_name

= same, but does not apply the generated network to
deployed tasks

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 58/80

5. Dataflow Configuration

Dataflow Configuration -
The principle ' I

@ connection policies are not portable across systems
= depends on device rates, ...

= compute them !

= ez An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 60/80

Dataflow Configuration m
Basic requirement ' "

Basics: input ports can be declared as ...

needs_data_connection this is the default. You'll only get the
last sample written

needs_reliable_connection if turned on, the connections will be
set up so that all samples should reach the task

input_port("can_in", "canbus/Message").
needs_reliable_connection.
doc("the HBridge-related messages coming from the CAN bus").

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 61/80

Dataflow Configuration

Needed information

@ a minimum device period
device(XsensImu, :as => ’xsens_imul’).
period(0.01)
@ a burst size, and burst rate (if there is one)
@ worstcase trigger latency
@ maximum processing times

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011

62/80

Dataflow Configuration m
Needed information . . kl

@ a minimum device period
@ a burst size, and burst rate (if there is one)

output_port("can_out", "canbus/Message").
burst(40, 0).
doc("the HBridge-related messages coming to be written on th
@ worstcase trigger latency

@ maximum processing times

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 62/80

Dataflow Configuration my
Needed information ' I

@ a minimum device period

@ a burst size, and burst rate (if there is one)
@ worstcase trigger latency

= default is 5ms for realtime tasks, 25ms for non-realtime
tasks

@ maximum processing times

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 62/80

Dataflow Configuration my
Needed information ' I

@ a minimum device period
@ a burst size, and burst rate (if there is one)
@ worstcase trigger latency
@ maximum processing times
= by default, 0. Can be set with worstcase_processing_time

class Icp::Task
worstcase_processing-time 1
end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 62/80

Other

Dataflow Configuration m
' A
I

Given all the information listed until now, you'll get the
worstcase buffer size
To reduce it a bit, you can specify when output ports are written

= see trigger methods on Orocos::Spec::OutputPort in
orogen

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 63/80

Dataflow Configuration ’ . b g

Note Q

@ if the policy is manually provided in connect (in
composition spec), then automatic policy configuration is
completely bypassed

composition ’0dometry’ do
connect imu.orientation_samples => odometry.orientation_samples,

‘type => :buffer, :size => 20
end

@ this information is used to configure logging too !!!
= if not available, logging falls back to a buffer size of
Orocos::RobyPlugin::Engine.default_logging_buffer_size

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 64/80

Dataflow Configuration ’ . 4

Logging configuration o
@ by default, all ports are logged
@ can be turned completely off in config/robot_name.rb with
State.orocos.disable_logging
@ on a per-type basis with
State.orocos.exclude_from_log "/canbus/Message"
@ for all tasks of a certain type with
State.orocos.exclude_from_log XsensImu::Task
@ look at the documentation of
Orocos::RobyPlugin::Configuration in orocos.rb
@ Universitat Bremen /F\gbimgiu;ﬁg&tf supervision & deployment in Rock 65/80

6. Runtime

Runtime . 4
Configuring tasks ' o

@ exclusively done through a configure method on the task
model

class TrajectoryFollower::Task
def configure
super
Write properties
orogen_task.controllerType = 0
end
end

@ less than ideal. Configuration files coming soon !

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 67/80

Runtime _ I 4
Configuring device drivers ' L

A bit better

@ one generic configuration method called device_id

device(Hokuyo).
period(0.025).
device_id("/dev/ttyS1")

@ device definition can be retrieved in the configure method

class Hokuyo::Task
def configure
super
device = robot_device
orogen_task.device = device.device_id
end
end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 68/80

Runtime _ 4
Configuring device drivers ' <

can be extended on a per device-type basis

class Hokuyo::Task
device_t = driver_for "Hokuyo"
device_t.extend_device_configuration do
def enable_remission_values; @enable_remission_values = true end
def remission_values?; @enable_remission_values end

end
end
in tasks/orogen/hokuyo.rb
in config/asguardv3.rb class Hokuyo::Task
device(Hokuyo). def configure
super

period(0.025).
device_id("/dev/ttyS1").
enable_remission_values

device = robot_device

if device.remission_values?
enable on orogen_task

end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 69/80

Runtime L 4
Running your deployments ' - ;I

scripts/orocos/run -r robot_name deployment_name

But also
scripts/orocos/run -r robot_name deployment_name
device_name

And

scripts/orocos/run -r robot_name - device_name

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 70/80

Runtime -y
Predefining deployments ' <

use define(name, model) instead of add(model)

define(’trajectory_following’, ControlLoop).

use TrajectoryFollower::Task, Skid4Control::SimpleController
define("drive_simple", ControlLoop).

use Controldev::Joystick, Skid4Control::SimpleController
define("debug_piv", ControlLoop).

use Controldev::Sliderbox, Control::PIVController

= can be used as a string in “add”

add_mission(’debug_piv?)

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 71/80

Runtime _ I 4
Defining modalities ' <

@ a modality is a way to do something

@ the supervision’s goal is to allow to switch between
modalities online

@ if you select a modality, other running modalities of the
same category are stopped

@ only things defined with define can be used

model.data_service_type "NavigationMode"
Compositions::ControlLoop.provides NavigationMode
Compositions::CorridorServoing.provides NavigationMode
modality_selection NavigationMode, "trajectory_following",
"corridor_servoing", "drive_simple", "drive_piv"

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 72/80

Runtime _ 4
Selecting modalities online - programmatically’ . \I

navigation_mode = nil
Roby.every(0.1, :on_error => :disable) do
if State.lowlevel_state?
if State.lowlevel_state =3
if navigation_mode
navigation_mode.stop!
navigation_mode = nil
end
elsif State.lowlevel_state ==
if IState.navigation_mode?
Robot.warn "switched to mode 3, but no navigation mode is selecte
elsif Inavigation_mode
Robot.info "starting navigation mode #{State.navigation_model}"
navigation_mode, _ = Robot.send("#{State.navigation_mode}!")
navigation_mode = navigation_mode.as_service
end
end
end

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 73/80

Runtime

Selecting modalities online - shell

scripts/orocos/shell [--host hostname]
> trajectory_following!
(actions lists all the commands that are available)

= ez An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011

74/80

Runtime. . -~ 4
Getting a predefined startup ' . ;I

scripts/run robot name [robot_typel

@ loads

@ starts the Roby engine
@ loads controllers/robot_name.rb
= this is where you put your main system’s configuration

Asguard

controllers/asguardv3.rb contains the modality switching code
between mode 2 (teleoperation) and mode 3 (autonomous)

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 75/80

Runtime _ I 4
Communication busses ’ <

@ they are dispatching data across other components
@ you don’t need to explicitely add them to your compositions
@ only need to declare them

@ Combus is a special device type
com_bus(Canbus, :as => ’can0’). defined by

device.id ’/dev/can0’
svrean tasks/orogen/canbus.rb

through *can0° do . @ Canbus::Task configures itself
hbridges = device(HbridgeSet) based on who’s connected to it
hbridges.slave(Hbridges).) o)
select_ids(—1, 2, 3, —4) @ at instanciation time, the
end supervision generates the

necessary ports and connections

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 76/80

Runtime

Communication

busses

Deployments::Lowlevel

[Process name: lowlevel]

can_in

in

cmd_hbridges

Hbridge::Task[hbridge_set]
hbridge_set_name:hbridge_set,hbridge_set_com_bus:can0

Canbus::Task
canbus_name:can0

hbridge_set
can_out state
errors stats

errors_hbridges

state

hbridge_samples

status_hbrid:

ges /

orientation_samples

Deployments
[Process name: sysmon]

can_in_experiment_markers
can_in_system_status
Sysmon::Task
experiment_start
experiment_stop

systemstate_samples

AsguardOdometry::Task

bodystate_samples

odometry_delta_samples

Fr-f

odometry_delta_samples

odometry_samples

odometry_samples

\

Deploymen! sensImu
[Process name: xsens_imu]

@ Universitat Bremen

Tod signal Task
ed_signa xsens_imu_name:xsens_imu1
system_status Calibrated sensors
orientation_samples
state

Compositions::Odometry
odometry.
is_a?(AsguardOdometry::Task)

odometry_delta_samples

odometry_samples

An introduction to supervision & deployment in Rock
February 7, 2011

77/80

7. Conclusion

Conclusion -y
What did we not cover ' o

@ execution display and logs
@ error representation and error recovery
@ mission plans

@ switching configuration (must be done at the composition
level for now)

@ the instanciation GUI (broken for now)

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7, 2011 79/80

Conclusion -y
What you should be able to do ' - ;I

@ get your system(s) running

@ get to grips with modality switching
@ get a lot of error reports

@ get bugs fixed by me ...:P

s e An introduction to supervision & deployment in Rock
@ Universitat Bremen February 7. 2011 80/80

	Introduction
	Digging in: concepts
	Modelling
	Compositions
	Generalization
	Almost there
	Practical aspects

	Deployment
	Devices
	Requirements
	Dynamic services

	Dataflow Configuration
	Runtime
	Conclusion

