
An introduction to supervision & deployment in Rock

Sylvain Joyeux

DFKI Bremen - Forschungruppe Robotik
& Universität Bremen

Director: Prof. Dr. Frank Kirchner
www.dfki.de/robotics
robotics@dfki.de

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

An introduction to supervision & deployment in Rock
February 7, 2011 2/80

Outline

1 Introduction

2 Digging in: concepts

3 Modelling

4 Deployment

5 Dataflow Configuration

6 Runtime

7 Conclusion
An introduction to supervision & deployment in Rock
February 7, 2011 3/80

1. Introduction

Introduction

What will you learn today

explain what the supervision layer does
. . . and how to control your robots with it

The main goal is to get you understand the basics of this tool

An introduction to supervision & deployment in Rock
February 7, 2011 5/80

Introduction

Building blocks

single components will often not be usable by themselves
example: pose estimation component, image processing
component
counter-example: devices

we must describe functional services
⇒ a group of components that, together, do something

The goal
Describe these functional services so that

one can cherry-pick functionality
one can recognize identical things done in different ways
one can track errors

An introduction to supervision & deployment in Rock
February 7, 2011 6/80

Introduction

Compositions and data services

compositions group of components that provide a function
data services generic “placeholders” for components and/or

other compositions (i.e. Orientation for all
orientation providers)

Compositions::Odometry
Provides: DataServices::RelativePose

command

actuators[Actuators]

status

can_in_system_status

can_in_experiment_markers

task[Sysmon::Task]

experiment_start

system_status

experiment_stop

led_signal

imu[Orientation]

orientation_samples

systemstate_samples

orientation_samples

hbridge_samples

odometry

odometry_delta_samples

bodystate_samples

odometry_samples

[AsguardOdometry::Task]

An introduction to supervision & deployment in Rock
February 7, 2011 7/80

Introduction

Dependency structure

Compositions::Odometry

Sysmon::Task DataServices::Actuators AsguardOdometry::Task DataServices::Orientation

Compositions::PoseEstimation

DataServices::Position

DataServices::Orientation PoseEstimator::Task

DataServices::LaserRangeFinder

Icp::Task

An introduction to supervision & deployment in Rock
February 7, 2011 8/80

2. Digging in: concepts

Digging in: concepts

Models and instances

Model gives information about a category of “things”
Instance a “thing” constructed based on information in the

corresponding model

Examples
Models Instances

OO programming Classes Objects
Type systems Types Values
oroGen Task context model Deployed task

An introduction to supervision & deployment in Rock
February 7, 2011 10/80

Digging in: concepts

Models and instances in Typelib & Roby

Typelib

Type subclass of Typelib::Type
Value instance of a subclass of Typelib::Type

Orocos/Roby

Task context definition subclass of TaskContext
Deployed task instance of a subclass of TaskContext

What does it mean ?
To add information to a model, you call class methods. To
modify the instances, you define methods on the class.

An introduction to supervision & deployment in Rock
February 7, 2011 11/80

Digging in: concepts

Naming

Ruby’s accepted naming scheme is UpperCamelCase for
classes and modules, UPPER CASE for constant values
and snake case for everything else
this is used in the instance / model scheme in the
supervision (we’ll see examples when they appear)

An introduction to supervision & deployment in Rock
February 7, 2011 12/80

Digging in: concepts

What is it going to be ?

building compositions (modelling)
deploying these compositions (running)
configuration, reconfiguration & tuning

An introduction to supervision & deployment in Rock
February 7, 2011 13/80

3. Modelling

Modelling - Compositions

The goal

We’re going to deploy asguard’s odometry

command

actuators

status

systemstate_samples

orientation_samples

hbridge_samples

odometry

odometry_delta_samples

bodystate_samples

odometry_samples

can_in_system_status

can_in_experiment_markers

task[Sysmon::Task]

experiment_start

system_status

experiment_stop

led_signal

imu[DataServices::Orientation]

orientation_samples

[DataServices::FourWheelPlatform]

[AsguardOdometry::Task]

An introduction to supervision & deployment in Rock
February 7, 2011 15/80

Modelling - Compositions

Model files

contain definitions of data services and compositions (and
some other things . . .)
load each other with
load system model(”filename”)
if models from oroGen files are needed, use
using task library ”orogen project name”

Naming: oroGen→ Roby

name ’xsens_imu’

task context ’Task’ do
end

using task library ’xsens_imu’

Defines
− the XsensImu module
− the XsensImu::Task model

An introduction to supervision & deployment in Rock
February 7, 2011 16/80

Modelling - Compositions

Creating compositions

using task library ’skid4_odometry’

using task library ’xsens_imu’

using task library ’hbridge’

composition ’Odometry’ do
add Hbridge::Task, :as => ’actuators’

add XsensImu::Task, :as => ’imu’

add Skid4Odometry::Task, :as => ’odometry’

end

⇒ Compositions::Odometry composition model

Compositions::Odometry

actuators_samples

orientation_samples

odometry[Skid4Odometry::Task]

odometry_delta_samples

odometry_samples

imu[XsensImu::Task]

calibrated_sensors

orientation_samples

state

can_in

actuators[Hbridge::Task]

can_out

errors

state

An introduction to supervision & deployment in Rock
February 7, 2011 17/80

Modelling - Compositions

Child names

using task library ’skid4_odometry’

using task library ’xsens_imu’

using task library ’hbridge’

composition ’Odometry’ do
add Hbridge::Task, :as => ’actuators’

add XsensImu::Task, :as => ’imu’

add Skid4Odometry::Task, :as => ’odometry’

end

Implicit name generated as snake case version of the child
model name
Hbridge::Task→ task, XsensImu::Task→ task, . . .
Explicit names given with the :as option

An introduction to supervision & deployment in Rock
February 7, 2011 18/80

Modelling - Compositions

Adding the dataflow connections

connections are specified per compositions
⇒ the tool makes sure that the dataflow is consistent at a

system level

Autoconnections
candidates are searched by port type and then port name
ports that are involved in manual connection are
automatically excluded from autoconnect
if an ambiguity exists, an error is generated

An introduction to supervision & deployment in Rock
February 7, 2011 19/80

Modelling - Compositions

Adding the dataflow connections

Autoconnections (contd.)

using task library ’skid4_odometry’

using task library ’xsens_imu’

using task library ’hbridge’

composition ’Odometry’ do
add Hbridge::Task, :as => ’actuators’

add XsensImu::Task, :as => ’imu’

add Skid4Odometry::Task, :as => ’odometry’

autoconnect
end

imu[XsensImu::Task]

calibrated_sensors

orientation_samples

state

actuators_samples

orientation_samples

odometry[Skid4Odometry::Task]

odometry_delta_samples

odometry_samples

can_in

actuators[Hbridge::Task]

can_out

errors

state

An introduction to supervision & deployment in Rock
February 7, 2011 20/80

Modelling - Compositions

Adding the dataflow connections

Manual connections

using task library ’skid4_odometry’

using task library ’xsens_imu’

using task library ’hbridge’

composition ’Odometry’ do
add Hbridge::Task, :as => ’actuators’

imu = add XsensImu::Task, :as => ’imu’

odometry = add Skid4Odometry::Task, :as => ’odometry’

connect imu.orientation samples => odometry.orientation samples
end

An introduction to supervision & deployment in Rock
February 7, 2011 21/80

Modelling - Compositions

What’s the issue here ?

a plain hbridge task has no way to control / read status of
motors
the solution is to

use an abstract “actuators” service
tell the system that the hbridge on asguard has one of those
and let it use the hbridge as the odometry’s actuator

An introduction to supervision & deployment in Rock
February 7, 2011 22/80

Modelling - Generalization

Generalization

Two tools: data services and specializations

data services represent generic placeholders
specializations allow to refine the definition of compositions
to suit specific needs

The goal
share composition models across systems
allow to recognize the software structure easily
⇒ common structure is represented in a common way

allow tools to recognize the structure
⇒ a pose estimator is a pose estimator everywhere

factor out runtime management code
⇒ if you a monitoring routine common to all pose estimators, it

needs to be defined only once
An introduction to supervision & deployment in Rock
February 7, 2011 23/80

Modelling - Generalization

Data Services

they describe a functionality
they describe an interface
they describe relationships between themselves

import types from ’base’

data service type ’Actuators’ do
input port("command", "base/actuators/Command")
output port("status", "base/actuators/Status")

end
data service type ’FourWheelPlatform’, :provides => Actuators

Data service models are stored in the DataServices
namespace, i.e. DataServices::Actuators, DataServices::Status
(DataServices:: can be shortened to Srv::)

An introduction to supervision & deployment in Rock
February 7, 2011 24/80

Modelling - Generalization

Relationships between services

data service type ’Position’ do
output port ’position_samples’, ’/base/samples/RigidBodyState’

end
data service type ’Orientation’ do

output port ’orientation_samples’, ’/base/samples/RigidBodyState’
end
data service type ’Pose’ do

output port ’pose_samples’, ’/base/samples/RigidBodyState’
provides Position, ’position_samples’ => ’pose_samples’

provides Orientation, ’orientation_samples’ => ’pose_samples’

end

Pose is providing both Position and Orientation
the pose samples port of Pose is to be used in place of
either the position samples port of Position or the
orientation samples port of Orientation

An introduction to supervision & deployment in Rock
February 7, 2011 25/80

Modelling - Generalization

Composition with data service

using task library ’skid4_odometry’

composition ’Odometry’ do
add Srv::FourWheelPlatform, :as => ’actuators’

add Srv::Orientation, :as => ’imu’

add Skid4Odometry::Task, :as => ’odometry’

autoconnect
end

command

actuators[DataServices::FourWheelPlatform]

status actuators_samples

orientation_samples

odometry[Skid4Odometry::Task]

odometry_delta_samples

odometry_samples

imu[DataServices::Orientation]

orientation_samples

An introduction to supervision & deployment in Rock
February 7, 2011 26/80

Modelling - Generalization

Composition Specialization

How to transform that

command

actuators[DataServices::FourWheelPlatform]

status actuators_samples

orientation_samples

odometry[Skid4Odometry::Task]

odometry_delta_samples

odometry_samples

imu[DataServices::Orientation]

orientation_samples

An introduction to supervision & deployment in Rock
February 7, 2011 27/80

Modelling - Generalization

Composition Specialization

Into that (asguard’s odometry)

command

actuators

status

systemstate_samples

orientation_samples

hbridge_samples

odometry

odometry_delta_samples

bodystate_samples

odometry_samples

can_in_system_status

can_in_experiment_markers

task[Sysmon::Task]

experiment_start

system_status

experiment_stop

led_signal

imu[DataServices::Orientation]

orientation_samples

[DataServices::FourWheelPlatform]

[AsguardOdometry::Task]

An introduction to supervision & deployment in Rock
February 7, 2011 27/80

Modelling - Generalization

Composition Specialization

central change is that we use Odometry::Task instead of
Skid4Odometry::Task
but Odometry::Task is very much related to
Skid4Odometry::Task from a conceptual point of view
unfortunately, they are not related from an implementation
POV

⇒ we first need to use a data service to generalize the
odometry task

An introduction to supervision & deployment in Rock
February 7, 2011 28/80

Modelling - Generalization

Composition Specialization

1 define the services

data service type ’RelativePose’ do
output port ’odometry_delta_samples’, ’/base/samples/RigidBodyState’
output port ’odometry_samples’, ’/base/samples/RigidBodyState’

end
data service type ’Odometry’ do

input port ’orientation_sample’, ’/base/samples/RigidBodyState’
input port ’actuators_sample’, ’/base/actuators/Status’
provides RelativePose

end

An introduction to supervision & deployment in Rock
February 7, 2011 29/80

Modelling - Generalization

Composition Specialization

2 replace Skid4Odometry::Task by Srv::Odometry in the
composition

composition ’Odometry’ do
add Srv::Actuators, :as => ’actuators’

add Srv::Orientation, :as => ’imu’

odometry = add Srv::Odometry, :as => ’odometry’

autoconnect
end

command

actuators[DataServices::Actuators]

status

actuators_sample

orientation_sample

odometry[DataServices::Odometry]

odometry_delta_samples

odometry_samples
imu[DataServices::Orientation]

orientation_samples

An introduction to supervision & deployment in Rock
February 7, 2011 29/80

Modelling - Generalization

Composition Specialization

3 tell the supervision to add sysmon if odometry is an
AsguardOdometry::Task
using task library ’odometry’

class AsguardOdometry::Task
provides Srv::Odometry

end
Compositions::Odometry.specialize ’odometry’ => AsguardOdometry::Task do

add Sysmon::Task
autoconnect

end

item autoconnect in the parent composition does not apply on
the specializations
⇒ needs to be repeated

An introduction to supervision & deployment in Rock
February 7, 2011 30/80

Modelling - Generalization

Composition Specialization

3 tell the supervision to add sysmon if odometry is an
AsguardOdometry::Task

Compositions::Odometry

command

actuators

status

actuators_sample

orientation_sample

odometry[DataServices::Odometry]

odometry_delta_samples

odometry_samples

imu[DataServices::Orientation]

orientation_samples

command

actuators

status

can_in_system_status

can_in_experiment_markers

task[Sysmon::Task]

experiment_start

system_status

experiment_stop

led_signal

imu[DataServices::Orientation]

orientation_samples

[DataServices::FourWheelPlatform]

[DataServices::Actuators]

[odometry.is_a?(AsguardOdometry::Task)]

Compositions::Odometry

systemstate_samples

orientation_samples

hbridge_samples

odometry

odometry_delta_samples

bodystate_samples

odometry_samples

[AsguardOdometry::Task]

An introduction to supervision & deployment in Rock
February 7, 2011 30/80

Modelling - Almost there

How to use compositions in compositions ?

you use them directly
you use them in place of a service
⇒ how to make compositions services ?

composition ’Odometry’ do
add Srv::Actuators, :as => ’actuators’

add Srv::Orientation, :as => ’imu’

odometry = add Srv::Odometry, :as => ’odometry’

autoconnect

export odometry.odometry delta samples
export odometry.odometry samples
provides Srv::RelativePose

end

An introduction to supervision & deployment in Rock
February 7, 2011 31/80

Modelling - Almost there

How to use compositions in compositions ?

Compositions::Odometry

Provides: DataServices::RelativePose

command

actuators[DataServices::Actuators]

status actuators_sample

orientation_sample

odometry[DataServices::Odometry]

odometry_delta_samples

odometry_samples

Composition Interface

odometry_delta_samples

odometry_samples

imu[DataServices::Orientation]

orientation_samples

In the system model display
dotted arrows represent exports
blue box represents the composition’s own interface

An introduction to supervision & deployment in Rock
February 7, 2011 31/80

Modelling - Practical aspects

Your turn now !

This was very dense (I know)
Your turn: think about your system’s architecture and what
compositions you want to implement
implement them without data services and without
specializations at first

An introduction to supervision & deployment in Rock
February 7, 2011 32/80

Modelling - Practical aspects

How ?

1 go into a new directory and
roby init -p orocos

2 enable the orocos plugin by editing config/init.rb and add
Roby.app.using ’orocos’

Standard file layout

tasks/data services/ service definitions
tasks/compositions/ composition definitions

System model display tool
scripts/orocos/system model -o svg

⇒ system model.svg file, can be displayed by e.g. inkscape

An introduction to supervision & deployment in Rock
February 7, 2011 33/80

Modelling - Practical aspects

A bit more on the file layout

tasks/orogen/ contains per-oroGen-project definitions
⇒ if the project ”xsens imu” is loaded inside the supervision,

then tasks/orogen/xsens imu.rb will be loaded too

used to bind tasks to generic services
used to define specializations of generic compositions

An introduction to supervision & deployment in Rock
February 7, 2011 34/80

Modelling - Practical aspects

Reusing stuff !

you can clone imoby’s models from
git://spacegit.dfki.uni-bremen.de/imoby/supervision.git

have a look at the complete system model with
scripts/orocos/system model -r asguardv3 -o svg

what can you reuse / what patterns are common with your
system ?
try reusing them by defining e.g. specializations

An introduction to supervision & deployment in Rock
February 7, 2011 35/80

4. Deployment

Deployment

Introduction

we have all those “nice” compositions
some of them are completely abstract (refer to services)
need to deploy
⇒ tell the system what you really want to run

An introduction to supervision & deployment in Rock
February 7, 2011 37/80

Deployment

Loading sequence

most of the roby-related commands can take a “robot
name” as argument
this name defines what needs to be loaded
for the time being, what you need to know is:

config/init.rb
config/robot name.rb

An introduction to supervision & deployment in Rock
February 7, 2011 38/80

Deployment

oroGen workflow
Pool of component models

 split across oroGen projects

xsens_imu::Task

hokuyo::Task

corridor_navigation::FollowingTask

asguard_odometry::Task

One system deployment project

deployment 'canserial'do
task('canserial','canserial::Task').

realtime.
priority(75)

add_default_logger
end

deployment "xsens_imu"do
task('xsens_imu','xsens_imu::Task').

realtime.
priority(25)

add_default_logger
end

deployment "lowlevel"do

task('can0','canbus::Task').

name "asguard_deployment"

all deployed tasks for a
single system are defined
in a single oroGen
deployment
⇒ provides a good

overview of all the
available tasks

the other oroGen projects
can have test deployments

This is a recommended
workflow, which works well with
the supervision. You’re free to
do otherwise, though !

An introduction to supervision & deployment in Rock
February 7, 2011 39/80

Deployment

oroGen & Roby loading sequence

An introduction to supervision & deployment in Rock
February 7, 2011 40/80

Deployment

A note of Ruby

When, in tasks/orogen/xsens imu.rb, we do
class XsensImu::Task

provides Srv::Orientation
end

we reopen the XsensImu::Task class
⇒ we add “stuff” to an already existing class (a Ruby feature)

An introduction to supervision & deployment in Rock
February 7, 2011 41/80

Deployment - Devices

The role of devices

central role: that’s where data comes from (and goes to) !
⇒ they are part of the robot description

What we are going to do is . . .

learn how the device descriptions work
learn how to list our robot’s devices

An introduction to supervision & deployment in Rock
February 7, 2011 42/80

Deployment - Devices

Devices

Robot description block

(in config/robot_name.rb)

Robot.devices do

 device(Devices::Hokuyo).

 additional_configuration.

 more_configuration.

 device(Devices::XsensImu).

 additional_configuration.

 more_configuration.

end

Tasks are declared as drivers

tasks/orogen/hokuyo.rb

class Hokuyo::Task

 driver_for "Devices::Hokuyo"

end

tasks/orogen/xsens_imu.rb

class XsensImu::Task

 driver_for "Devices::XsensImu" do

 provides Srv::Orientation

 end

end

An introduction to supervision & deployment in Rock
February 7, 2011 43/80

Deployment - Devices

Devices

device models are defined in Devices (Dev in short)
devices are data sources
one task can be a driver for multiple devices
simultaneously
the driver for ’Dev::ModelName’ form defines both the
device model and says that the task is a driver for this. The
“Dev::” (or Devices::) prefix can be omitted.
if you have multiple available drivers for a given device,
define the device model separately with
device type ’ModelName’
and declare the driver without the quotes with
driver for Dev::ModelName

An introduction to supervision & deployment in Rock
February 7, 2011 44/80

Deployment - Requirements

Small note

I’m cheating !
The FourWheelPlatform used before does not exist anymore.
There are only Actuators from now one

An introduction to supervision & deployment in Rock
February 7, 2011 45/80

Deployment - Requirements

Ask the system to deploy !

More layout !

config/deployments/ predefined deployment files

edit config/deployments/odometry.rb
add mission Compositions::Odometry

An introduction to supervision & deployment in Rock
February 7, 2011 46/80

Deployment - Requirements

What do we have . . . for now ?

tasks/orogen/xsens imu.rb

class XsensImu::Task
driver for ’XsensImu’ do

provides Orientation
end

end

tasks/orogen/hokuyo.rb

class Hokuyo::Task
driver for ’Hokuyo’

end

config/tutorial.rb

Robot.devices do
device XsensImu
device Hokuyo

end

config/deployments/odometry.rb

add mission Compositions::Odometry

An introduction to supervision & deployment in Rock
February 7, 2011 47/80

Deployment - Requirements

run
scripts/orocos/instantiate odometry -o svg

and get

|= cannot find a concrete implementation for 1 task(s)

| for DataServices::Actuators:0x7f6c54473f48[]

| child actuators of Compositions::Odometry/[odometry.is_a?(AsguardOdometry::Task)]:0x7f6c5448b6c0[]

An introduction to supervision & deployment in Rock
February 7, 2011 48/80

Deployment - Requirements

run
scripts/orocos/instantiate odometry -o svg

and get

|= cannot find a concrete implementation for 1 task(s)

| for DataServices::Actuators:0x7f6c54473f48[]

| child actuators of Compositions::Odometry/[odometry.is_a?(AsguardOdometry::Task)]:0x7f6c5448b6c0[]

An introduction to supervision & deployment in Rock
February 7, 2011 48/80

Deployment - Requirements

Ahh . . . yes . . .

Our device list contains
a single Srv::Odometry provider (Odometry::Task)
a single Srv::Orientation provider (the IMU)
but no Srv::Actuators provider
⇒ remember that issue with the hbridge task ?

An introduction to supervision & deployment in Rock
February 7, 2011 49/80

Deployment - Dynamic services

The hbridge deployment

the hbridge multiplexes/demultiplexes
it creates the “right” ports at configuration time
but we need to tell the module what to do !

Robot.devices do
hbridges = device(Dev::HbridgeSet)
hbridges.slave(Dev::Hbridges).

select ids(−1, 2, 3, −4)
end

An introduction to supervision & deployment in Rock
February 7, 2011 50/80

Deployment - Dynamic services

Defining dynamic services

class Hbridge::Task
hbridge set = driver for(’HbridgeSet’)
hbridges = hbridge set.dynamic slaves ’Hbridges’ do

output port "errors_#{name}", "/hbridge/Error"
input port "cmd_#{name}", "/base/actuators/Command"
output port "status_#{name}", "/base/actuators/Status"
provides Srv::Actuators,
"status" => "status_#{name}",
"command" => "cmd_#{name}"

end

one can define Hbridges devices on HbridgeSet devices
Hbridges devices are Actuators

An introduction to supervision & deployment in Rock
February 7, 2011 51/80

Deployment - Dynamic services

Finally . . .

Deployments::XsensImu
[Process name: xsens_imu]

Deployments::Lowlevel

[Process name: lowlevel]

Deployments::Sysmon
[Process name: sysmon]

can_in_experiment_markers

can_in_system_status

Sysmon::Task

experiment_start

experiment_stop

led_signal

system_status

hbridge_samples

orientation_samples

systemstate_samples

Odometry::Task

bodystate_samples

odometry_delta_samples

odometry_samples

odometry_delta_samples

odometry_samples

Compositions::Odometry

odometry.is_a?(Odometry::Task)

odometry_delta_samples

odometry_samples

XsensImu::Task

xsens_imu_name:xsens_imu

calibrated_sensors

orientation_samples

state

can_in

cmd_hbridges

Hbridge::Task[hbridge_set]

hbridge_set_name:hbridge_set

can_out

errors

errors_hbridges

state

status_hbridges

Colored boxes that enclose tasks represent deployments (i.e.
processes), the blue boxes represent the composition’s
interfaces (exported ports)

An introduction to supervision & deployment in Rock
February 7, 2011 52/80

Deployment - Dynamic services

What about multiple devices ?

Robot.devices do
device Dev::XsensImu, :as => ’xsens_imu1’

device Dev::XsensImu, :as => ’xsens_imu2’

device Dev::Hokuyo
end
add mission Cmp::Odometry

= cannot find a device to tie to 1 task(s)

| for XsensImu::Task:0x7f558e8cd710[]

| child imu of Compositions::Odometry/[odometry.is_a?(Odometry::Task)]:0x7f558e8ec318[]

An introduction to supervision & deployment in Rock
February 7, 2011 53/80

Deployment - Dynamic services

Disambiguate by name

Robot.devices do
device XsensImu, :as => ’xsens_imu1’

device XsensImu, :as => ’xsens_imu2’

device Hokuyo
end
add mission(Compositions::Odometry).

use ’xsens_imu1’

Important
The device name has to match the deployed task name

An introduction to supervision & deployment in Rock
February 7, 2011 54/80

Deployment - Dynamic services

Disambiguate by name

Deployments::XsensImu
log:true,on:localhost

[Process name: xsens_imu]

Deployments::Lowlevel

[Process name: lowlevel]

Deployments::Sysmon

[Process name: sysmon]

can_in

cmd_hbridges

Hbridge::Task[hbridge_set]

hbridge_set_name:hbridge_set

can_out

errors

errors_hbridges

state

status_hbridges

hbridge_samples

orientation_samples

systemstate_samples

AsguardOdometry::Task

bodystate_samples

odometry_delta_samples

odometry_samples

odometry_delta_samples

odometry_samples

Compositions::Odometry

odometry.is_a?(Odometry::Task)

odometry_delta_samples

odometry_samplescan_in_experiment_markers

can_in_system_status

Sysmon::Task

experiment_start

experiment_stop

led_signal

system_status

XsensImu::Task

xsens_imu_name:xsens_imu1

calibrated_sensors

orientation_samples

state

An introduction to supervision & deployment in Rock
February 7, 2011 54/80

Deployment - Dynamic services

So . . .

the engine will not leave any ambiguity
if it is ambiguous, it will generate an error
if there’s something missing, it will generate an error
in all the other cases, it will deploy automatically

An introduction to supervision & deployment in Rock
February 7, 2011 55/80

Deployment - Dynamic services

Multi-host deployments

two-machine setup, avalon-front and avalon-back
supervision runs on avalon-back (localhost)
tell the supervision what should run where

Roby.app.use deployments from ’avalon_back’, :on => ’localhost’

Roby.app.orocos process server ’front’, ’avalon-front’
Roby.app.use deployments from ’avalon_front’, :on => ’front’

An introduction to supervision & deployment in Rock
February 7, 2011 56/80

Deployment - Dynamic services

Multi-host deployments

the system will deploy by picking tasks on each available
machine
it will try to reduce network load (i.e. pick tasks that are
close to each other)
the orocos process server must be manually started on
avalon-front with
orocos process server

the avalon front oroGen project does not need to be built
on avalon back, but needs to be on avalon front

An introduction to supervision & deployment in Rock
February 7, 2011 57/80

Deployment - Dynamic services

Up to you now !

create deployment files to play around
run
scripts/orocos/instantiate -r robot name -o svg

--no-policies --no-loggers deployment name

⇒ deploys the specification from
config/deployments/deployment name.rb

alternatively, to get the network before deployment,
scripts/orocos/instantiate -r robot name -o svg

--no-policies --no-loggers --no-deployments

deployment name

⇒ same, but does not apply the generated network to
deployed tasks

An introduction to supervision & deployment in Rock
February 7, 2011 58/80

5. Dataflow Configuration

Dataflow Configuration

The principle

connection policies are not portable across systems
⇒ depends on device rates, . . .

⇒ compute them !

An introduction to supervision & deployment in Rock
February 7, 2011 60/80

Dataflow Configuration

Basic requirement

Basics: input ports can be declared as . . .

needs data connection this is the default. You’ll only get the
last sample written

needs reliable connection if turned on, the connections will be
set up so that all samples should reach the task

input port("can_in", "canbus/Message").
needs reliable connection.
doc("the HBridge-related messages coming from the CAN bus").

An introduction to supervision & deployment in Rock
February 7, 2011 61/80

Dataflow Configuration

Needed information

a minimum device period

device(XsensImu, :as => ’xsens_imu1’).
period(0.01)

a burst size, and burst rate (if there is one)
worstcase trigger latency
maximum processing times

An introduction to supervision & deployment in Rock
February 7, 2011 62/80

Dataflow Configuration

Needed information

a minimum device period
a burst size, and burst rate (if there is one)

output port("can_out", "canbus/Message").
burst(40, 0).
doc("the HBridge-related messages coming to be written on the CAN bus").

worstcase trigger latency
maximum processing times

An introduction to supervision & deployment in Rock
February 7, 2011 62/80

Dataflow Configuration

Needed information

a minimum device period
a burst size, and burst rate (if there is one)
worstcase trigger latency
⇒ default is 5ms for realtime tasks, 25ms for non-realtime

tasks

maximum processing times

An introduction to supervision & deployment in Rock
February 7, 2011 62/80

Dataflow Configuration

Needed information

a minimum device period
a burst size, and burst rate (if there is one)
worstcase trigger latency
maximum processing times
⇒ by default, 0. Can be set with worstcase processing time

class Icp::Task
worstcase processing time 1

end

An introduction to supervision & deployment in Rock
February 7, 2011 62/80

Dataflow Configuration

Other

Given all the information listed until now, you’ll get the
worstcase buffer size
To reduce it a bit, you can specify when output ports are written

⇒ see trigger methods on Orocos::Spec::OutputPort in
orogen

An introduction to supervision & deployment in Rock
February 7, 2011 63/80

Dataflow Configuration

Note

if the policy is manually provided in connect (in
composition spec), then automatic policy configuration is
completely bypassed

composition ’Odometry’ do
...
connect imu.orientation samples => odometry.orientation samples,

:type => :buffer, :size => 20
end

this information is used to configure logging too !!!
⇒ if not available, logging falls back to a buffer size of

Orocos::RobyPlugin::Engine.default logging buffer size

An introduction to supervision & deployment in Rock
February 7, 2011 64/80

Dataflow Configuration

Logging configuration

by default, all ports are logged
can be turned completely off in config/robot name.rb with

State.orocos.disable logging

on a per-type basis with

State.orocos.exclude from log "/canbus/Message"

for all tasks of a certain type with

State.orocos.exclude from log XsensImu::Task

look at the documentation of
Orocos::RobyPlugin::Configuration in orocos.rb

An introduction to supervision & deployment in Rock
February 7, 2011 65/80

6. Runtime

Runtime

Configuring tasks

exclusively done through a configure method on the task
model

class TrajectoryFollower::Task
def configure

super
Write properties
orogen task.controllerType = 0

end
end

less than ideal. Configuration files coming soon !

An introduction to supervision & deployment in Rock
February 7, 2011 67/80

Runtime

Configuring device drivers

A bit better

one generic configuration method called device id

device(Hokuyo).
period(0.025).
device id("/dev/ttyS1")

device definition can be retrieved in the configure method

class Hokuyo::Task
def configure

super
device = robot device
orogen task.device = device.device id

end
end

An introduction to supervision & deployment in Rock
February 7, 2011 68/80

Runtime

Configuring device drivers

can be extended on a per device-type basis
class Hokuyo::Task

device t = driver for "Hokuyo"
device t.extend device configuration do

def enable remission values; @enable remission values = true end
def remission values?; @enable remission values end

end
end

in config/asguardv3.rb
device(Hokuyo).

period(0.025).
device id("/dev/ttyS1").
enable remission values

in tasks/orogen/hokuyo.rb
class Hokuyo::Task

def configure
super
device = robot device
if device.remission values?

enable on orogen task
end

An introduction to supervision & deployment in Rock
February 7, 2011 69/80

Runtime

Running your deployments

scripts/orocos/run -r robot name deployment name

But also
scripts/orocos/run -r robot name deployment name

device name

And
scripts/orocos/run -r robot name - device name

An introduction to supervision & deployment in Rock
February 7, 2011 70/80

Runtime

Predefining deployments

use define(name, model) instead of add(model)
define(’trajectory_following’, ControlLoop).

use TrajectoryFollower::Task, Skid4Control::SimpleController
define("drive_simple", ControlLoop).

use Controldev::Joystick, Skid4Control::SimpleController
define("debug_piv", ControlLoop).

use Controldev::Sliderbox, Control::PIVController

⇒ can be used as a string in “add”

add mission(’debug_piv’)

An introduction to supervision & deployment in Rock
February 7, 2011 71/80

Runtime

Defining modalities

a modality is a way to do something
the supervision’s goal is to allow to switch between
modalities online
if you select a modality, other running modalities of the
same category are stopped
only things defined with define can be used

model.data service type "NavigationMode"

Compositions::ControlLoop.provides NavigationMode
Compositions::CorridorServoing.provides NavigationMode
modality selection NavigationMode, "trajectory_following",

"corridor_servoing", "drive_simple", "drive_piv"

An introduction to supervision & deployment in Rock
February 7, 2011 72/80

Runtime

Selecting modalities online - programmatically

navigation mode = nil
Roby.every(0.1, :on error => :disable) do

if State.lowlevel state?
if State.lowlevel state != 3

if navigation mode
navigation mode.stop!
navigation mode = nil

end
elsif State.lowlevel state == 3

if !State.navigation mode?
Robot.warn "switched to mode 3, but no navigation mode is selected in State.navigation_mode"

elsif !navigation mode
Robot.info "starting navigation mode #{State.navigation_mode}"

navigation mode, = Robot.send("#{State.navigation_mode}!")
navigation mode = navigation mode.as service

end
end

end
end

An introduction to supervision & deployment in Rock
February 7, 2011 73/80

Runtime

Selecting modalities online - shell

scripts/orocos/shell [--host hostname]

> trajectory following!

(actions lists all the commands that are available)

An introduction to supervision & deployment in Rock
February 7, 2011 74/80

Runtime

Getting a predefined startup

scripts/run robot name [robot type]

loads
starts the Roby engine
loads controllers/robot name.rb
⇒ this is where you put your main system’s configuration

Asguard
controllers/asguardv3.rb contains the modality switching code
between mode 2 (teleoperation) and mode 3 (autonomous)

An introduction to supervision & deployment in Rock
February 7, 2011 75/80

Runtime

Communication busses

they are dispatching data across other components
you don’t need to explicitely add them to your compositions
only need to declare them

com bus(Canbus, :as => ’can0’).
device id ’/dev/can0’

through ’can0’ do
hbridges = device(HbridgeSet)
hbridges.slave(Hbridges).

select ids(−1, 2, 3, −4)
end

Combus is a special device type
defined by
tasks/orogen/canbus.rb
Canbus::Task configures itself
based on who’s connected to it
at instanciation time, the
supervision generates the
necessary ports and connections

An introduction to supervision & deployment in Rock
February 7, 2011 76/80

Runtime

Communication busses

Deployments::XsensImu
[Process name: xsens_imu]

Deployments::Sysmon
[Process name: sysmon]

Deployments::Lowlevel

[Process name: lowlevel]

can_in

cmd_hbridges

Hbridge::Task[hbridge_set]

hbridge_set_name:hbridge_set,hbridge_set_com_bus:can0

can_out

errors

errors_hbridges

state

status_hbridges

in

Canbus::Task

canbus_name:can0

hbridge_set

state

stats

hbridge_samples

orientation_samples

systemstate_samples

AsguardOdometry::Task

bodystate_samples

odometry_delta_samples

odometry_samples

odometry_delta_samples

odometry_samples

Compositions::Odometry

odometry.

odometry_delta_samples

odometry_samples

can_in_experiment_markers

can_in_system_status

Sysmon::Task

experiment_start

experiment_stop

led_signal

system_status

XsensImu::Task

xsens_imu_name:xsens_imu1

calibrated_sensors

orientation_samples

state

is_a?(AsguardOdometry::Task)

An introduction to supervision & deployment in Rock
February 7, 2011 77/80

7. Conclusion

Conclusion

What did we not cover

execution display and logs
error representation and error recovery
mission plans
switching configuration (must be done at the composition
level for now)
the instanciation GUI (broken for now)

An introduction to supervision & deployment in Rock
February 7, 2011 79/80

Conclusion

What you should be able to do

get your system(s) running
get to grips with modality switching
get a lot of error reports
get bugs fixed by me . . . :P

An introduction to supervision & deployment in Rock
February 7, 2011 80/80

	Introduction
	Digging in: concepts
	Modelling
	Compositions
	Generalization
	Almost there
	Practical aspects

	Deployment
	Devices
	Requirements
	Dynamic services

	Dataflow Configuration
	Runtime
	Conclusion

